Archive for November, 2014

New improved version of the crossover calc this now includes a graphical plot of the frequency response. Due to the size of the graphics, the form below will submit to a full page version of the calculator. You can select 1st order or 2nd order slopes, with the option of Linkwitz-Riley on 2nd order. We will add 3rd order and 4th order in due course. This calculators works two ways, you can enter the frequencies and impedances and calculate the component values, or you can enter the component values to get the crossover frequencies and see the frequency response. This version also allows different impedance and frequency between Low Pass and High Pass, as well as different slopes. So you could for example have the Low Pass section with a 8 ohm woofer, crossing over at 1200 Hz, and the High Pass at 16 ohms crossing over at 1800 Hz. Combinations like this are becoming increasingly common, as using a 16 ohm HF driver often negates the need to put attenuation in the HF part of the circuit. Also, a typical 1600Hz Butterworth crossover can often have a peak in response around the crossover frequency, particularly if the HF driver is highly efficient – offsetting the crossover frequencies may seem counter-intuitive as it might appear you are leaving a hole in the response, but often the coupling between LF and HF counteracts this. If you already have a crossover, you can simulate the response using the lower part of the controls. Please check you have component values correct, Capacitors should be specified in microFarads (uF) and Inductors in milliHenries (mH). Most pre-built crossovers will have capacitor values printed on the components, unfortunately very few divulge the Inductor values, to get these you will need an appropriate measurement meter.

2nd order Crossover Calc
To get the component values for a crossover, enter the impedances and crossover frequencies for the high pass and low pass sections and then click ‘CALC’
Low Pass Fc:
Woofer Impedance: Ohms
High Pass Fc:
Tweeter Impedance: Ohms
To see the response and crossover frequencies for known component values, enter these in uF and mH in the boxes below and click ‘CALC’
C1: uF
L1: mH
C2: uF
L2: mH